Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Khawar Rauf, ${ }^{\text {a* }}$ Amin Badshah, ${ }^{\text {a }}$ Ulrich Flörke ${ }^{\text {b }}$ and Aamer Saeed ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and
${ }^{\mathbf{b}}$ Department Chemie, Fakultät für
Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany

Correspondence e-mail:
aminbadshah@yahoo.com

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.097$
Data-to-parameter ratio $=18.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-Benzoyl-3-(3,4-dichlorophenyl)thiourea

In the molecule of the title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}$, the dihedral angle between the two aromatic rings is 38.58 (6) ${ }^{\circ}$. In the crystal structure, centrosymmetric dimers are formed via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds $[\mathrm{N} \cdots \mathrm{S}=$ 3.4798 (16) Å]. These dimeric units are, in turn, connected by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming one-dimensional chains along [100].

Comment

The background to this study has been set out in a previous paper (Rauf et al., 2006a). The geometric parameters in (I) (Fig. 1) are typical for N, N^{\prime}-disubstituted thiourea derivatives. The C7-S1 and C8-O1 bonds (Table 1) both show the expected double-bond character. The $\mathrm{C} 1-\mathrm{N} 1, \mathrm{C} 7-\mathrm{N} 1, \mathrm{C} 7-$ N 2 and $\mathrm{C} 8-\mathrm{N} 2$ bond lengths indicate partial double-bond character. Compared to the 3,4-chloro compound, the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C} 1-\mathrm{N} 1$ bonds are somewhat shorter than the corresponding bonds in the related 3-chloro- and 4-chloro-substituted compounds (Khawar Rauf et al., 2006a,b). The dihedral angle between the benzene and phenyl rings is 38.58 (6) ${ }^{\circ}$.

(I)

In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 2) link molecules, forming centrosymmetric dimers which are, in turn, connected via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions to form one-dimensional chains along [100] and which are stacked along [010] (Fig. 2).

Experimental

A solution of benzoyl chloride ($1.50 \mathrm{~g}, 10 \mathrm{mmol}$) in acetone (50 ml) was added dropwise to a suspension of $\operatorname{KSCN}(1.00 \mathrm{~g}, 10 \mathrm{mmol})$ in acetone (30 ml). The reaction mixture was heated under reflux for 45 min and then cooled to room temperature. A solution of 3,4dichloroaniline ($1.62 \mathrm{~g}, 10 \mathrm{mmol}$) in acetone (15 ml) was then added and the resulting mixture was stirred for 3 h . The reaction mixture was then poured into crushed ice and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from toluene to obtain crystals of the title compound, with an overall yield of 85%. Full spectroscopic and physical characterization are reported elsewhere.
\qquad

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50\% probability level.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}$	$D_{x}=1.576 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=325.20$	Mo $K \alpha$ radiation
Monoclinic, $C 2 / c$	Cell parameters from 3197
$a=25.070(2) \AA$	\quad reflections
$b=3.8928(4) \AA$	$\theta=2.9-28.0^{\circ}$
$c=28.137(3) \AA$	$\mu=0.62 \mathrm{~mm}^{-1}$
$\beta=93.326(2)^{\circ}$	$T=120(1) \mathrm{K}$
$V=2741.3(5) \AA^{3}$	Needle, colorless
$Z=8$	$0.46 \times 0.04 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART CCD	3320 independent reflections
\quad diffractometer	2845 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.033$
Absorption correction: multi-scan	$\theta_{\max }=28.1^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-32 \rightarrow 32$
$T_{\min }=0.763, T_{\max }=0.982$	$k=-5 \rightarrow 5$
11673 measured reflections	$l=-37 \rightarrow 32$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0479 P)^{2}\right. \\
& \quad+2.0546 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
The crystal packing, viewed along [010], with hydrogen bonds indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.88	1.87	$2.610(2)$	140
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots 1^{\mathrm{i}}$	0.88	2.63	$3.4798(16)$	163
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.40	$3.265(2)$	152

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x+\frac{1}{2},-y+\frac{3}{2},-z$.
H atoms were included in idealized positions $(\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$) in a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

MKR is grateful to the Higher Education Commission of Pakistan for financial support for the PhD programme, Scholarship No. (PIN) ILC (0363104).

References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Khawar Rauf, M., Badshah, A., Flörke, U. \& Saeed, A. (2006a). Acta Cryst. E62, o1060-o1061.
Khawar Rauf, M., Badshah, A., Flörke, U. \& Saeed, A. (2006b). Acta Cryst. E62., o1419-o1420.

[^0]: © 2006 International Union of Crystallography All rights reserved

